CEN CWA 15748-9

WORKSHOP July 2008

AGREEMENT

ICS 35.240.50

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.10 - Part 9: Text Terminal Unit Device Class Interface
- Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2008 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15748-9:2008 D/E/F

Page 2
CWA 15748-9:2008

Table of Contents

Lo =T Vo o N 4
IR | 214 o T 11T T) o N 7
1.1 Background to Release 3.10cccccveimminiimmminei s 7
1.2 XFS Service-Specific Programmingccccccmrimiiiiicsssssmrsessinsss 7
2. Text Terminal UNits ... rr s s s ms s e s s e r e e e e e e 8
R T (5 =1 = o Vo . 9
4. Info ComMMANAS ... e s e nnn s 10
41 WFS INF_TTU STATUS ... s s s s s s s s s s s e e e e n e e e s 10
4.2 WFS_INF_TTU_CAPABILITIES.......oootiiiiiccccmeerrere s isscssssssssssssssssssssssss s s s s ssssssssssssssnsssssssssnsnssssees 12
4.3 WFS_INF_TTU_FORNM_LISTcooiiieistrecsssescsssssssssssssssssssssssassssssssssssssssesssssssssssesssssssssssssssassans 14
4.4 WFS_INF_TTU_QUERY_FORM......cccsrueererrecsssesssssssssssssssssssssssssssssssssesssssssssssessassssnssssesassses 15
4.5 WFS_INF_TTU_QUERY_FIELDcoooiuiecuceemcsseesssessssssssassssesasssns 16
4.6 WFS_INF_TTU_KEY DETAIL ..ocuiuititeicestsssssessessassssssssssssssasssssssssses 18
5. Execute COMMANAScceuuiiiiiieii i rrcas s s s s s s e s s e s s nm s s s e nns s s s rnnnssssennnn 20
51 WFS_CMD_TTU_BEEPcuieiceiecsteecscssesess s sssssssssssssssssss st sssss st sssssssssssssssasssssssssssasssssans 20
5.2 WFS_CMD_TTU_CLEARSCREEN............ et scssscere s se s sssms e ss s sanme e e e ee s nnn 21
5.3 WFS_CMD_TTU_DISPLIGHT.....ccoeiiieieeeieeceeeeeneeeeeeeneeenensnsnsnsnsnnnsnsmsmsnsnsnsnsnsnsssnsnsnsnsnsnsnsssnnnsnsnnnnn 22
5.4 WFS_CMD_TTU_SET LED....iicicciieceeieicssasssssssns 23
5.5 WFS_CMD_TTU_SET_RESOLUTIONcceosueiierencrseeicssns 24
5.6 WFS_CMD_TTU WRITE_FORMcesueieiiususesesssassssssssssssasasssss 25
5.7 WFS_CMD_TTU_READ_FORMccoeuiueiusrricssssessssssssssssssssssssssssssssssssassssssssssssssssssssssssassssasans 26
5.8 WFS_CMD_TTU _WRITE ...ceuitireiccsssesesssscsssssssssssssssssssssssssssssssssssssssasassssssssssssssssssssssssasasasss 28
5.9 WFS_CMD_TTU_READ.......cocoiuiicusteicsessissessssssssassssssassssssans 30
5.10 WFS_CMD_TTU _RESET ...ciiitiieicssssesssiisssassssssssssssasassssssns 33
5.11 WFS_CMD_TTU_DEFINE_KEYS.....ccoeesuriesrrecasssesssassssssans 34
5.12 WFS_CMD_TTU_POWER_SAVE_CONTROL.......eceevssurrrerrsrcssssssssssssssssssssssssssssssssssssssassssssns 36
6 Y= 1 €N 37
6.1 WFS_EXEE_TTU_FIELDERROR..........ccciiinnnnnnnnnnsnsnsnsnsnsnsssssssssssnsnsnsnsnsnsnsnsnsnsnsnsnsnnnnnnnnnns 37
6.2 WFS_EXEE_TTU_FIELDWARNING..........cooiiiriiiiccceeerrernsssssssmsse e e sessssssssmss s e s s essnssssnmssnsssessnnnnn 38
6.3 WFS_EXEE_TTU_KEY ...uoueiitiecuiteeessssssssssssssssesssssssssssssssssssasssssssssssssssssssssessssssssassesasassssassssesas 39
6.4 WFS_SRVE_TTU_DEVICEPOSITION........cciiiiiiiccceeereeresssssssmseee s ssssssssssms s e s s ssssssssnssssssssnssssnns 40
6.5 WFS_SRVE_TTU_POWER_SAVE_CHANGE........ceceeosieiuireisrrrscsssesssssssssssessssssssssssssssssssssssesans 41
7. Form and Field Definitions ... 42
7.1 Definition SyNtax ... 42

7.2 XFS form/media definition files in multi-vendor environmentsccccoiiimciiiiciiiieiineen. 43

Page 3
CWA 15748-9:2008

78 T oY ¢ 0 7= 1 4 T (o o R 44
S =Y e I =Y 10 14 oY 45

O o 1= Y= T =Y i] - 47

Page 4
CWA 15748-9:2008

Foreword

This CWA is revision 3.10 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2007-11-29. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.10.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference
Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference
Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference
Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class
Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class
Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class
Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class
Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Page 5
CWA 15748-9:2008

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class
Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class
Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.0
(CWA 14050) to Version 3.10 (this CWA) - Programmer's Reference

Part 62: Printer Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.03 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA)
- Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.01 (CWA 14050) to
Version 3.10 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version
3.10 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version 3.10
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.02 (CWA 14050) to Version 3.10 (this
CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of CEN :
AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST, MSA,
MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed to
the CEN Management Centre.

Page 6
CWA 15748-9:2008

Revision History:

1.0

May 24, 1993

Initial release of API and SPI specification.

1.11

February 3, 1995

Separation of specification into separate documents for
API/SPI and service class definitions.

2.0

November 11, 1996

Update release encompassing the self-service environment.

3.0

October 18, 2000

Addition of the reset command.

UNICODE support.

Addition of the command WFS _INF TTU KEY DETAIL.
Enhancement of the WFS CMD TTU READ command.

Addition of the events

WFS_EXEE TTU_FIELDWARNING,
WFS_EXEE TTU_FIELDERROR, and
WFS_EXEE TTU KEY.

For a detailed description see CWA 14050-22:2000 TTU
migration from version 2.0 to version 3.0.

3.10

November 29, 2007

For a description of changes see CWA 15748-68:2007 TTU
Migration from Version 3.0 (see CWA 14050) to Version
3.10.

Page 7
CWA 15748-9:2008

1. Introduction

1.1Background to Release 3.10

The CEN/ISSS XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor
software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are
developed within the CEN/ISSS (European Committee for Standardization/Information Society Standardization
System) Workshop environment. CEN/ISSS Workshops aim to arrive at a European consensus on an issue that can
be published as a CEN Workshop Agreement (CWA).

The CEN/ISSS XFS Workshop encourages the participation of both banks and vendors in the deliberations required
to create an industry standard. The CEN/ISSS XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.10 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the XFS specification has been prompted
by a series of factors.

There has been a technical imperative to extend the scope of the existing specification to include new devices, such
as the Barcode Reader, Card Dispenser and Item Processing Module.

Similarly, there has also been pressure, through implementation experience and additional requirements, to extend
the functionality and capabilities of the existing devices covered by the specification.

1.2XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of the XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability és considered to be fundamental to
the service. In this case, a WFS_ERR_UNSUPP_ COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS _ERR_INVALID COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 8
CWA 15748-9:2008

2. Text Terminal Units

This specification describes the functionality of the services provided by text terminal unit (TTU) services under
XFS, by defining the service-specific commands that can be issued, using the WFSGetInfo, WFSAsyncGetlInfo,
WFSExecute and WFSAsyncExecute functions.

This section describes the functions provided by a generic Text Terminal Unit (TTU) service. A Text Terminal Unit
is a text i/o device, which applies both to ATM operator panels and to displays incorporated in devices such as PIN
pads and printers. This service allows for the following categories of functions:

e Forms oriented input and output
e Direct display output
e Keyboard input
e LED settings and control
All position indexes are zero based, where column zero, row zero is the top-leftmost position.

If the device has no shift key, the WFS_ CMD TTU READ FORM and WFS CMD_TTU_ READ commands will
return only upper case letters. If the device has a shift key, these commands return upper and lower case letters as
governed by the user's use of the shift key.

Page 9
CWA 15748-9:2008

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.10

Page 10

CWA 15748-9:2008
4. Info Commands

4.1WFS_INF_TTU_STATUS

Description

Input Param

Output Param

This command reports the full range of information available, including the information that is

provided by the Service Provider.
None.

LPWFSTTUSTATUS IpStatus;
typedef struct wfs ttu status

WORD fwDevice;

WORD wKeyboard;

WORD wKeylock;

WORD wLEDs [WFS_TTU LEDS MAX] ;
WORD wDisplaySizeX;

WORD wDisplaySizeY;

LPSTR lpszExtra;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

} WFSTTUSTATUS, *LPWFSTTUSTATUS;

fwDevice
Specifies the state of the text terminal unit as one of the following flags:
Value Meaning
WFS TTU DEVONLINE The device is on-line (i.e., powered on and
operable).

WFS TTU DEVOFFLINE

WFS_TTU DEVPOWEROFF
WFS_TTU DEVBUSY

WFS TTU DEVNODEVICE

WFS_TTU DEVHWERROR
WFS TTU DEVUSERERROR

WEFS TTU DEVFRAUDATTEMPT

wKeyboard

The device is off-line (e.g., the operator has
taken the device offline by turning a switch
or pulling out the device).

The device is powered off or physically not
connected.

The device is busy and unable to process an
execute command at this time.

There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

The device is inoperable due to a hardware
error.

The device is inoperable because a person is
preventing proper device operation.

The device is present but has detected a
fraud attempt.

Specifies the state of the keyboard in the text terminal unit as one of the following flags:

Value

Meaning

WFS TTU KBDON
WEFS TTU KBDOFF
WFS TTU KBDNA

wKeylock

The keyboard is activated.
The keyboard is not activated.
The keyboard is not available.

Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:

Value

Meaning

WFS TTU KBDLOCKON
WFS_TTU KBDLOCKOFF
WFS_TTU KBDLOCKNA

The keyboard lock switch is activated.
The keyboard lock switch is not activated.
The keyboard lock switch is not available.

Error Codes

Comments

Page 11
CWA 15748-9:2008

wLEDs{WFS TTU LEDS MAX]

Specifies the state of the LEDs. The maximum guidance light index is WFS TTU LEDS MAX.
The number of available LEDs can be retrieved with the WFS _INF TTU_ CAPABILITIES info
command. All member elements in this array are specified as one of the following flags:

Value Meaning

WFS TTU LEDNA The status is not available.

WFS _TTU_LEDOFF The LED is turned off.

WFS TTU LEDSLOWFLASH The LED is blinking slowly.

WFS TTU LEDMEDIUMFLASH The LED is blinking medium frequency.

WEFS_TTU_LEDQUICKFLASH The LED is blinking quickly.

WFS TTU _LEDCONTINUOUS The light is turned on continuous (steady).
wDisplaySizeX

Specifies the horizontal size of the display of the text terminal unit (the number of columns that
can be displayed).

wDisplaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

IpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An empty
list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

wDevicePosition

Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_TTU DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS TTU DEVONLINE or

WFS TTU_DEVOFFLINE). This value is one of the following values:

Value Meaning

WFS_TTU_DEVICEINPOSITION The device is in its normal operating
position, or is fixed in place and cannot be
moved.

WFS_TTU_ DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS _TTU DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS TTU DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the IpszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report
WFS TTU DEVPOWEROFF when the device has been removed or

WFS _TTU DEVHWERROR if the communications are unexpectedly lost. All other fields should
contain a value based on the following rules and priority:

1. Report the value as unknown.
2. Report the value as a general h/w error.

3. Report the value as the last known value.

Page 12
CWA 15748-9:2008

4.2WFS_INF_TTU_CAPABILITIES

Description
None.

LPWFSTTUCAPS IpCaps;

Input Param

Output Param

This command is used to retrieve the capabilities of the text terminal unit.

typedef struct wfs ttu caps

WORD
WORD
LPWFSTTURESOLUTION
WORD
BOOL
BOOL
BOOL
BOOL
WORD
LPSTR
BOOL

wClass;

fwType;
*]1ppResolutions;
wNumOfLEDs;
bKeyLock;
bDisplayLight;
bCursor;

bForms;
fwCharSupport;
lpszExtra;
bPowerSaveControl;

} WFSTTUCAPS, *LPWFSTTUCAPS;

wClass

Specifies the logical service class as WFS SERVICE CLASS TTU.

SwType

Specifies the type of the text terminal unit as one of the following flags:

Value

Meaning

WES TTU_FIXED

WFS TTU REMOVABLE

IppResolutions

The text terminal unit is a fixed device.
The text terminal unit is a removable device.

Pointer to a NULL terminated array of pointers WFSTTURESOLUTION structures. Specifies the
resolutions supported by the physical display device. (For a definition of
WEFSTTURESOLUTION see command WFS CMD TTU SET RESOLUTION). The resolution
indicated in the first position is the default resolution and the device will be placed in this
resolution when the Service Provider is initialized or reset through the WFS CMD TTU RESET

command.

wNumOfLEDs

Specifies the number of LEDs available in this text terminal unit.

bKeyLock

Specifies whether the text terminal unit has a key lock switch. The value can be either FALSE (not

available) or TRUE (available).
bDisplayLight

Specifies whether the text terminal unit has a display light that can be switched ON and OFF with
the WFS_CMD_ TTU_DISPLIGHT command. The value can be either FALSE (not available) or

TRUE (available).

bCursor

Specifies whether the text terminal unit display supports a cursor. The value can be either FALSE
(not available) or TRUE (available).

bForms

Specifies whether the text terminal unit service supports forms oriented input and output. The
value can be either FALSE (not available) or TRUE (available).

JwCharSupport

One or more flags specifying the Character Sets, in addition to single byte ASCII, supported by

the Service Provider:

Value

Meaning

WFS_TTU_ASCII
WFS_TTU UNICODE

ASCII is supported for XFS forms.
UNICODE is supported for XFS forms.

Error Codes

Comments

Page 13
CWA 15748-9:2008

For fwCharSupport, a Service Provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A Service Provider can not support UNICODE forms without also
supporting ASCII forms.

IpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An empty
list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the IpszExtra parameter
may not be device or vendor-independent.

Page 14
CWA 15748-9:2008

4.3WFS_INF_TTU_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.
Input Param None.
Output Param LPSTR IpszFormList;

IpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 15
CWA 15748-9:2008

4.4WFS_INF_TTU_QUERY_FORM

Description

Input Param

Output Param

Error Codes

Comments

This command is used to retrieve details of the definition of a specified form.
LPSTR IpszFormName;

IpszFormName
Points to the null-terminated form name on which to retrieve details.

LPWFSTTUFRMHEADER IpFrmHeader;
typedef struct wfs ttu frm header

LPSTR lpszFormName ;
WORD wWidth;
WORD wHeight;
WORD wVersionMajor;
WORD wVersionMinor;
WORD fwCharSupport;
LPSTR lpszFields;
WORD wLanguagelD;
} WFSTTUFRMHEADER, *LPWFSTTUFRMHEADER;
IpszFormName
Specifies the null-terminated name of the form.
wWidth

Specifies the width of the form in columns.

wHeight
Specifies the height of the form in rows.

wVersionMajor
Specifies the major version. If the version is not specified in the form then zero is returned.

wVersionMinor
Specifies the minor version. If the version is not specified in the form then zero is returned.

JwCharSupport
A single flag indicating whether the form is encoded in ASCII or UNICODE:

Value Meaning

WFS _TTU_ASCI XFS form is encoded in ASCII.

WFS_TTU_UNICODE XFS form is encoded in UNICODE.
IpszFields

Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

wLanguagelD
Specifies the language identifier for the form.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR TTU FORMNOTFOUND The specified form cannot be found.
WFS ERR TTU FORMINVALID The specified form is invalid.

None.

Page 16

CWA 15748-9:2008

4.5WFS_INF_TTU_QUERY_FIELD

Description

Input Param

Output Param

This command is used to retrieve details of the definition of a single or all fields on a specified
form.

LPWFSTTUQUERYFIELD IpQueryField;

typedef struct wfs_ttu query field

LPSTR lpszFormName;

LPSTR lpszFieldName;

} WESTTUQUERYFIELD, *LPWFSTTUQUERYFIELD;
IpszFormName
Pointer to the null-terminated form name.
IpszFieldName

Pointer to the null-terminated name of the field about which to retrieve details. If this value is a
NULL pointer, then retrieve details for all fields on the form.

LPWFSTTUFRMFIELD *IppFields;

IppFields
Pointer to a NULL terminated array of pointers to field definition structures:

typedef struct wfs ttu frm field

LPSTR lpszFieldName;
WORD fwType;
WORD fwClass;
WORD fwAccess;
WORD fwOverflow;
LPSTR lpszFormat;
WORD wLanguagelD;
} WESTTUFRMFIELD, *LPWFSTTUFRMFIELD;
IpszFieldName
Pointer to the null-terminated field name.
JwType
Specifies the type of field and can be one of the following:
Value Meaning
WFS TTU FIELDTEXT A text field.
WFS TTU FIELDINVISIBLE An invisible text field.
WFS TTU FIELDPASSWORD A password field, input is echoed as “*’.
fwClass
Specifies the class of the field and can be one of the following:
Value Meaning
WEFS_TTU_CLASSSTATIC The field data cannot be set by the
application.
WFS _TTU_ CLASSOPTIONAL The field data can be set by the application.
WEFS_TTU_CLASSREQUIRED The field data must be set by the application.
fwAccess

Specifies whether the field is to be used for input, output, or both and can be a combination of the
following bit-flags:

Value Meaning
WEFS TTU_ ACCESSREAD The field is used for input from the physical
device.
WFS TTU ACCESSWRITE The field is used for output to the physical
device.
fwOverflow

Specifies how an overflow of field data should be handled and can be one of the following:

Error Codes

Comments

Value

Page 17
CWA 15748-9:2008

Meaning

WFS_TTU_OVFTERMINATE

WFS_TTU_OVFTRUNCATE
WFS TTU_OVFOVERWRITE

IpszFormat

Format string as defined in the form for this field.

wLanguagelD

Specifies the language identifier for the field.

Return an error and terminate display of the
form.

Truncate the field data to fit in the field.
Print the field data beyond the extents of the
field boundary.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WFS_ERR TTU FORMNOTFOUND
WFS _ERR TTU FORMINVALID
WFS_ERR TTU FIELDNOTFOUND
WEFS _ERR TTU FIELDINVALID

None.

The specified form cannot be found.
The specified form is invalid.
The specified field cannot be found.
The specified field is invalid.

Page 18

CWA 15748-9:2008

4.6WFS_INF_TTU_KEY_DETAIL

Description

Input Param

Output Param

This command returns information about the Keys (buttons) supported by the device.
This command should be issued to determine which Keys are available.

None.

LPWFSTTUKEYDETAIL IpKeyDetail;
typedef struct wfs ttu key detail

LPSTR lpszKeys;
LPWSTR 1lpwszUNICODEKeysS;
LPWORD lpwCommandKeys;

} WFSTTUKEYDETAIL, *LPWFSTTUKEYDETAIL;

IpszKeys

String which holds the printable characters (numeric and alphanumeric keys) on the Text Terminal
Unit, e.g. “0123456789ABCabcafy” if those text terminal input keys are present. This string is a
NULL pointer if no keys of this type are present on the device.

IpwszUNICODEKeys

String which holds the numeric and alphanumeric keys on the Text Terminal Unit like lpszKeys
but in UNICODE format. This string is a NULL pointer if capability fwCharSupport equals
WEFS_TTU_ASCII or if no keys of this type are present on the device.

IpwCommandKeys
Array of command keys on the Text Terminal Unit. The array is terminated with a zero value.
This array is a NULL pointer if no keys of this type are present on the device.

WFS_TTU_CK _ENTER

WFS_TTU _CK_CANCEL

WFS_TTU_CK CLEAR

WFS_TTU_CK BACKSPACE

WFS_TTU_CK HELP

WFS_TTU_CK 00

WFS_TTU_CK 000

WFS_TTU CK_ARROWUP

WFS TTU CK_ARROWDOWN

WFS TTU CK_ARROWLEFT

WFS TTU CK_ARROWRIGHT
The following values may be used as vendor dependent keys.

WFS_TTU _CK_OEMI

WFS TTU _CK OEM2

WFS TTU _CK _OEM3

WFS TTU _CK_OEM4

WFS TTU _CK _OEMS

WFS TTU _CK_OEM6

WEFS TTU_CK OEM7

WFS TTU _CK OEMS

WFS TTU _CK OEM9

WFS_TTU_CK_OEMI10

WFS_TTU CK OEMI11

Error Codes

Comments

WFS_TTU_CK_OEMI12

The following keys are used for Function Descriptor Keys.

WFS_TTU_CK_FDKO1
WFS_TTU_CK_FDK02
WFS_TTU_CK_FDKO03
WFS_TTU_CK_FDK04
WFS_TTU_CK_FDKO05
WFS_TTU_CK_FDKO06
WFS_TTU_CK_FDK07
WFS_TTU_CK_FDKO08
WFS_TTU_CK_FDK09
WFS_TTU_CK_FDK10
WFS_TTU_CK_FDKI1
WFS_TTU_CK_FDK12
WFS_TTU_CK_FDKI13
WFS_TTU_CK_FDK 14
WFS_TTU_CK_FDKI15
WFS_TTU_CK_FDK16
WFS_TTU_CK_FDK17
WFS_TTU_CK_FDKI18
WFS_TTU_CK_FDK19
WFS_TTU_CK_FDK20
WFS_TTU_CK_FDK21
WFS_TTU_CK_FDK22
WFS_TTU_CK_FDK23
WFS_TTU_CK_FDK24
WFS_TTU_CK_FDK25
WFS_TTU_CK_FDK26
WFS_TTU_CK_FDK27
WFS_TTU_CK_FDK28
WFS_TTU_CK_FDK29
WFS_TTU_CK_FDK30
WFS_TTU_CK_FDK31
WFS_TTU_CK_FDK32

None.

Page 19
CWA 15748-9:2008

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Page 20
CWA 15748-9:2008

5. Execute Commands

5.1WFS_CMD_TTU_BEEP

Description This command is used to beep at the text terminal unit.
Input Param LPWORD IpwBeep;

IpwBeep
Specifies whether the beeper should be turned on or off. Specified as one or more of the following
flags of type A, or B, or as WFS_TTU_ BEEPCONTINUOUS in combination with one of the

flags of type B:

Value Meaning Type

WFS _TTU BEEPOFF The beeper is turned off. A

WFS TTU BEEPKEYPRESS The beeper sounds a key click B
signal.

WFS TTU BEEPEXCLAMATION The beeper sounds an B
exclamation signal.

WFS TTU BEEPWARNING The beeper sounds a warning B
signal.

WFS _TTU BEEPERROR The beeper sounds an error B
signal.

WFS_TTU BEEPCRITICAL The beeper sounds a critical B
error signal.

WFS TTU BEEPCONTINUOUS The beeper sound is turned C

on continuously.
Output Param None.
Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

Page 21
CWA 15748-9:2008

5.2WFS_CMD_TTU_CLEARSCREEN

Description

Input Param

Output Param
Error Codes
Events

Comments

This command clears the specified area of the text terminal unit screen. The cursor is positioned to
the upper left corner of the cleared area.

LPWFSTTUCLEARSCREEN IpClearScreen;

struct _wfs_ttu clear_ screen

{

WORD wPositionX;
WORD wPositionY;
WORD wWidth;
WORD wHeight;

} WEFSTTUCLEARSCREEN, *LPWFSTTUCLEARSCREEN;

wPositionX
Specifies the horizontal position of the area to be cleared.

wPositionY
Specifies the vertical position of the area to be cleared.

wWidth
Specifies the width of the area to be cleared. This value must be positive.

wHeight
Specifies the height of the area to be cleared. This value must be positive.

None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

If the input parameter is a NULL pointer, the whole screen will be cleared.

Page 22

CWA 15748-9:2008

5.3WFS_CMD_TTU_DISPLIGHT

Description

Input Param

Output Param
Error Codes
Events

Comments

This command is used to switch the lighting of the text terminal unit on or off.
LPWFSTTUDISPLIGHT IpDispLight;

typedef struct wfs_ttu disp light

BOOL bMode ;
} WFSTTUDISPLIGHT, *LPWFSTTUDISPLIGHT;

bMode
Specifies whether the lighting of the text terminal unit is switched on (TRUE) or off (FALSE).

None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

None.

Page 23
CWA 15748-9:2008

5.4WFS_CMD_TTU_SET LED

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to set the status of the LEDs.

LPWFSTTUSETLEDS IpSetLEDs;

typedef struct _wfs_ ttu set leds

WORD wLED;
WORD fwCommand ;
} WFSTTUSETLEDS, *LPWFSTTUSETLEDS;
wLED
Specifies the index of the LED to set.
fwCommand
Specifies the state of the LED, as one of the following flags:
Value Meaning
WFS _TTU_LEDOFF The LED is turned off.
WFS TTU LEDSLOWFLASH The LED is set to flash slowly.
WFS TTU LEDMEDIUMFLASH The LED is blinking medium frequency.
WFS TTU LEDQUICKFLASH The LED is set to flash quickly.
WFS TTU _LEDCONTINUOUS The LED is turned on continuously (steady).

If a LED flash state is not supported no error will be generated, instead the TTU Service Provider
will use the LED flash state closest to the one requested.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR TTU INVALIDLED An attempt to set a LED to a new value was
invalid because the LED does not exist.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

Page 24

CWA 15748-9:2008

5.5WFS_CMD_TTU_SET_RESOLUTION

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to set the resolution of the display. The screen is cleared and the cursor is
positioned at the upper left position.

LPWFSTTURESOLUTION IpResolution;

typedef struct wfs_ttu resolution

WORD wSizeX;

WORD wSizeY;

} WFSTTURESOLUTION, *LPWFSTTURESOLUTION;
wSizeX

Specifies the horizontal size of the display of the text terminal unit (the number of columns that
can be displayed).

wSizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS ERR TTU RESNOTSUPP The specified resolution is not supported by
the display.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

Page 25
CWA 15748-9:2008

5.6WFS_CMD_TTU_WRITE_FORM

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to display a form by merging the supplied variable field data with the
defined form and field data specified in the form.

LPWFSTTUWRITEFORM lpWriteform;

typedef struct wfs_ ttu write form

LPSTR lpszFormName;

BOOL bClearScreen;
LPSTR lpszFields;

LPWSTR 1pszUNICODEFields;

} WESTTUWRITEFORM, *LPWFSTTUWRITEFORM;

IpszFormName
Pointer to the null-terminated form name.

bClearScreen
Specifies whether the screen is cleared before displaying the form (TRUE) or not (FALSE).

IpszFields

Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire field string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0.
The <FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) to display on the text terminal unit key pad for this field.

IpszUNICODEFields

Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) to display on the text terminal
unit key pad for this field.

Note: The lpszUNICODEFields field should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_TTU INF QUERY FORM command. The
use of IpszFields and I[pszUNICODEFields fields is mutually exclusive.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR TTU FORMNOTFOUND The specified form definition cannot be
found.

WFS ERR TTU FORMINVALID The specified form definition is invalid.

WFS _ERR TTU MEDIAOVERFLOW The form overflowed the media.

WFS _ERR TTU FIELDSPECFAILURE The syntax of the /pszFields member is
invalid.

WFS ERR TTU CHARSETDATA Character set(s) supported by Service

Provider is inconsistent with use of

IpszFields or IlpszUNICODEFields fields.
WFS _ERR TTU FIELDERROR An error occurred while processing a field,

causing termination of the display request.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS _EXEE TTU FIELDERROR A fatal error occurred while processing a
field.
WFS _EXEE TTU FIELDWARNING A non-fatal error occurred while processing a
field.
None.

Page 26

CWA 15748-9:2008

5.7WFS_CMD_TTU_READ_FORM

Description

Input Param

Output Param

Error Codes

Events

Comments

This command is used to read data from input fields on the specified form.

LPWFSTTUREADFORM IpReadForm;

typedef struct _wfs ttu read form

LPSTR lpszFormName;
LPSTR lpszFieldNames;
} WESTTUREADFORM, *LPWFSTTUREADFORM;

IpszFormName
Pointer to the null-terminated name of the form.

IpszFieldNames

Pointer to a list of null-terminated field names from which to read input data, with the final name
terminating with two null characters. The fields are edited by the user in the order that the fields
are specified within this parameter. If [pszFieldNames value is a NULL pointer, then data is read
from all input fields on the form in the order they appear in the form file (independent of the field
screen position).

LPWFSTTUREADFORMOUT IpReadFormOut;

typedef struct wfs ttu read form out

LPSTR lpszFields;

LPWSTR 1lpszUNICODEFields;

} WFSTTUREADFORMOUT, *LPWFSTTUREADFORMOUT;
IpszFields

Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the final string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0. The
<FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad for this field. This parameter is a NULL
pointer if form is encoded in UNICODE.

IpszUNICODEFields

Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) read from the text terminal unit
key pad for this field. This parameter is a NULL pointer if the form is encoded in ASCII.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR TTU FORMNOTFOUND The specified form cannot be found.

WFS ERR TTU FORMINVALID The specified form definition is invalid.

WFS _ERR TTU FIELDSPECFAILURE The syntax of the [pszFieldNames member is
invalid.

WFS _ERR TTU KEYCANCELED The read operation was terminated by
pressing the <CANCEL> key.

WFS _ERR TTU FIELDERROR An error occurred while processing a field,

causing termination of the read request.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS _EXEE TTU FIELDERROR A fatal error occurred while processing a
field.

WFS _EXEE TTU FIELDWARNING A non-fatal error occurred while processing a
field.

The WFS_TTU_CK_ENTER key only acts as terminate key when it is pressed in the last read
field. When the WFS TTU_CK_ENTER key is pressed in an intermediate field, the cursor moves

Page 27
CWA 15748-9:2008

to the next field and the data entry finishes for the current field. Any other key that terminates
input (except cancel), will cause all the fields to be returned in their present state. If cancel
terminates input then the command will return the WFS _ERR_TTU KEYCANCELED error.

The following keys will not be returned in the output parameter /pszFields or
IpszUNICODETFields, but they may affect the field content (note in the following the term field
content is used to refer to the data buffer and the display field):

Value

Meaning

WFS_TTU_CK_CLEAR
WFS_TTU_CK_BACKSPACE

WFS_TTU_CK_00

WFS_TTU_CK_000

Will clear the field content.

Will cause the character before the Current
Edit Position to be removed from the field
content. If WFS TTU CK BACKSPACE is
the first key pressed after a field is activated
(for any reason other than when the

WFS _TTU _CK BACKSPACE key causes
the field to be activated), then the last
character in the field content is deleted. If
WFS TTU CK BACKSPACE is pressed
when the Current Edit Position is at the start
of a field, then the previous field is activated.
If WFS_TTU_CK_ BACKSPACE is the first
key pressed after the field is activated as a
result of an earlier

WFS _TTU_CK _BACKSPACE then no
characters are deleted from the field content
and the previous field will be activated. It is
not possible to navigate backwards past the
first field; in this case

WFS TTU_CK BACKSPACE will have no
effect.

Will add a double zero ‘00’ string to the field
content. If there is not enough space for all
the digits to be added to the field content
when the field’s OVERFLOW definition is
TERMINATE or TRUNCATE then the
excess ‘0’s will be ignored. If the field’s
OVERFLOW definition is OVERWRITE
then all the ‘0’s are added to the field
content.

Will add a triple zero ‘000’ string to the field
content. If there is not enough space for all
the digits to be added to the field content
when the field’s OVERFLOW definition is
TERMINATE or TRUNCATE then the
excess ‘0’s will be ignored. If the field’s
OVERFLOW definition is OVERWRITE
then all the ‘0’s are added to the field
content.

Page 28
CWA 15748-9:2008

5.8WFS_CMD_TTU_WRITE

Description This command displays the specified text on the display of the text terminal unit. The specified
text may include the control characters CR (Carriage Return) and LF (Line Feed). The control
characters can be included in the text as CR, or LF, or CR LF, or LF CR and all combinations will
perform the function of relocating the cursor position to the left hand side of the display on the
next line down. If the text will overwrite the display area then the display will scroll.

Input Param LPWFSTTUWRITE IpWrite;

typedef struct _wfs_ttu write

WORD fwMode;

SHORT wPosX;

SHORT wPosY;

WORD fwTextAttr;

LPSTR lpsText;

LPWSTR 1psUNICODEText ;

} WESTTUWRITE, *LPWFSTTUWRITE;
fwMode

Specifies whether the position of the output is absolute or relative to the current cursor position.
Possible values are:

Value Meaning

WFS _TTU POSRELATIVE The output is positioned relative to the
current cursor position.

WFS TTU POSABSOLUTE The output is positioned absolute at the

position specified in wPosX and wPosY.

wPosX

If fwMode is set to WFS_TTU POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_ POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY

If fwMode is set to WFS_TTU POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_ POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwTextAttr
Specifies the text attributes used for displaying the text as a combination of the following flags. If
none of the following attribute flags are selected then the text will be displayed as

TEXTNORMAL.
Value Meaning
WFS TTU TEXTUNDERLINE The displayed text will be underlined.
WEFS TTU TEXTINVERTED The displayed text will be inverted.
WFS TTU TEXTFLASH The displayed text will be flashing.
IpsText
Specifies the text that will be displayed.
IpsUNICODEText

Specifies the UNICODE text that will be displayed.
Note: IpsText and [psUNICODEText are mutually exclusive.
Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR TTU CHARSETDATA Character set(s) supported by Service
Provider is inconsistent with use of [psText
or IpsUNICODEText fields.

Page 29
CWA 15748-9:2008

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

Page 30
CWA 15748-9:2008

5.9WFS_CMD_TTU_READ

Description This command activates the keyboard of the text terminal unit for input of the specified number of
characters. Depending on the specified flush mode the input buffer is cleared. During this
command, pressing an active key results ina WFS EXEE TTU KEY event containing the key
details. On completion of the command (when the maximum number of keys have been pressed or
a terminator key is pressed), the entered string, as interpreted by the Service Provider, is returned.
The Service Provider takes command keys into account when interpreting the data.

Input Param LPWFSTTUREAD IpRead;

typedef struct _wfs ttu read

WORD wNumOfChars;

WORD fwMode ;

SHORT wPosX;

SHORT wPosY;

WORD fwEchoMode;

WORD fwEchoAttr;

BOOL bCursor;

BOOL bFlush;

BOOL bAutoEnd;

LPSTR lpszActiveKeys;

LPWSTR lpwszActiveUNICODEKeysS;
LPWORD lpwActiveCommandKeys;
LPWORD lpwTerminateCommandKeys;

} WEFSTTUREAD, *LPWFSTTUREAD;

wNumOfChars

Specifies the number of printable characters (numeric and alphanumeric keys) that will be read
from the text terminal unit key pad. All command keys like WFS TTU CK_ENTER,

WFS TTU_CK FDKO1 will not be counted.

fwMode

Specifies where the cursor is positioned for the read operation. Possible values are:

Value

Meaning

WFS_TTU_POSRELATIVE

WFS_TTU_POSABSOLUTE

wPosX

The cursor is positioned relative to the
current cursor position.

The cursor is positioned absolute at the
position specified in wPosX and wPosY.

If fwMode is set to WFS_TTU POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_ POSRELATIVE this specifies a horizontal offset relative to the

current cursor position as a zero (0) based value.

wPosY

If fwMode is set to WFS_TTU POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_ POSRELATIVE this specifies a vertical offset relative to the current

cursor position as a zero (0) based value.

fwEchoMode

Specifies how the user input is echoed to the screen as one of the following flags:

Value

Meaning

WFS_TTU_ECHOTEXT
WFS_TTU_ECHOINVISIBLE
WFS_TTU_ECHOPASSWORD

fwEchoAttr

The user input is echoed to the screen.
The user input is not echoed to the screen.
The keys entered by the user are echoed as
the replace character on the screen.

Specifies the text attributes with which the user input is echoed to the screen as a combination of
the following flags. If none of the following attribute flags are selected then the text will be

displayed as TEXTNORMAL.
Value

Meaning

WFS _TTU_TEXTUNDERLINE

The displayed text will be underlined.

Output Param

Page 31
CWA 15748-9:2008

WES TTU TEXTINVERTED The displayed text will be inverted.
WFS TTU TEXTFLASH The displayed text will be flashing.
bCursor
Specifies whether the cursor is visible (TRUE) or invisible (FALSE).
bFlush

Specifies whether the keyboard input buffer is cleared before allowing for user input (TRUE) or
not (FALSE).

bAutoEnd
Specifies whether the command input is automatically ended by the Service Provider if the
maximum number of printable characters as specified with wNumOfChars is entered.

IpszActiveKeys

String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab”, to be active during the execution of the command. Devices having a shift key interpret
this parameter differently from those that do not have a shift key. For devices having a shift key,
specifying only the upper case of a particular letter enables both upper and lower case of that key,
but the device converts lower case letters to upper case in the output parameter. To enable both
upper and lower case keys, and have both upper and lower case letters returned, specify both the
upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key, specifying
either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of a
particular letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case of
the letter in the output parameter. For both types of device, specifying only lower case letters (e.g.
"12ab") produces a key invalid error. This parameter is a NULL pointer if no keys of this type are
active keys. IpszActiveKeys and IpwszActiveUNICODEKeys are mutually exclusive, so
IpszActiveKeys must be a NULL pointer if lpwszActiveUNICODEKeys is not a NULL pointer.

IpwszActiveUNICODEKeys

String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab” (UNICODE), to be active during the execution of the command. Devices having a shift
key interpret this parameter differently from those that do not have a shift key. For devices having
a shift key, specifying only the upper case of a particular letter enables both upper and lower case
of that key, but the device converts lower case letters to upper case in the output parameter. To
enable both upper and lower case keys, and have both upper and lower case letters returned,
specify both the upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift
key, specifying either the upper case only (e.g. "12AB"), or specifying both the upper and lower
case of a particular letter (e.g. "12AaBb"), enables that key and causes the device to return the
upper case of the letter in the output parameter. For both types of device, specifying only lower
case letters (e.g. "12ab") produces a key invalid error. This parameter is a NULL pointer if
capability fwCharSupport equals WES_TTU_ASCII or if no keys of this type are active keys.
IpszActiveKeys and lpwszActiveUNICODEKeys are mutually exclusive, so
IpswzActiveUNICODEKeys must be a NULL pointer if [pszActiveKeys is not a NULL pointer.

IpwActiveCommandKeys

Array specifying the command keys which are active during the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
active keys.

IpwTerminateCommandKeys

Array specifying the command keys which must terminate the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
terminate keys.

LPWFSTTUREADIN IpReadln;
typedef struct wfs ttu read in

LPSTR lpszInput;
LPWSTR 1lpszUNICODEInput;
} WFSTTUREADIN, *LPWFSTTUREADIN;

IpszInput
Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad.

Page 32

CWA 15748-9:2008

Error Codes

Events

Comments

IpszUNICODEInput

Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad.

Note 1: Ipszinput and [pszUNICODEInput are mutually exclusive, so if IpszInput is not a NULL
pointer then I[pszUNICODEInput must be a NULL pointer, and vice versa.

Note 2: The following keys will not be returned in the output parameter Ipszinput or
IpszUNICODEInput, but they may affect the buffer if active:

Value

Meaning

WFS_TTU_CK_CLEAR

WFS_TTU_CK_BACKSPACE

WFS_TTU_CK_00

WFS_TTU_CK_000

Will clear the buffer. The number of
printable characters pressed will be set to
Zero.

Will cause the last printable character in the
buffer to be removed. The number of
printable characters pressed will be reduced
by one, unless the number of printable
characters pressed was zero.

Will add a double zero ‘00’ string to the
buffer. If the WFS_TTU_CK 00 key is
pressed, and there is not enough space for all
the digits to be added to the buffer, then the
key press will be ignored, no digits will be
added to the buffer and no

WFS _EXEE TTU KEY event will be
generated.

Will add a triple zero ‘000 string to the
buffer. If the WFS_TTU_CK 000 key is
pressed, and there is not enough space for all
the digits to be added to the buffer, then the
key press will be ignored, no digits will be
added to the buffer and no

WFS _EXEE TTU KEY event will be
generated.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value

Meaning

WFS _ERR TTU KEYINVALID
WFS_ERR TTU KEYNOTSUPPORTED

WEFS ERR TTU NOACTIVEKEYS

At least one of the specified keys is invalid.
At least one of the specified keys is not
supported by the Service Provider.

There are no active keys specified.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value

Meaning

WFS_EXEE_TTU _KEY

None.

An active key on the Text Terminal Unit has
been pressed. Note: A command key press
will not result in a character being displayed.

Page 33
CWA 15748-9:2008

510 WFS_CMD_TTU RESET

Description Sends a service reset to the Service Provider. This command clears the screen, clears the keyboard
buffer, sets the default resolution and sets the cursor position to the upper left.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition.

Page 34

CWA 15748-9:2008

511 WFS_CMD_TTU_DEFINE_KEYS

Description

Input Param

Output Param

Error Codes

This command defines the keys that will be active during the next
WFS CMD TTU READ FORM command. The configured set will be active until the next
WFS CMD TTU READ FORM command ends, at which point the default values are restored.

LPWFSTTUDEFKEYS IpDefKeys;
typedef struct _wfs_ ttu def keys

LPSTR lpszActiveKeys;

LPWSTR lpwszActiveUNICODEKeysS;
LPWORD lpwActiveCommandKeys;
LPWORD lpwTerminateCommandKeys;

} WEFSTTUDEFKEYS, *LPWFSTTUDEFKEYS;

IpszActiveKeys

String which specifies the alphanumeric keys on the Text Terminal Unit, e.g. “12ABab”, to be
active during the execution of the next WFS CMD TTU READ FORM command. Devices
having a shift key interpret this parameter differently from those that do not have a shift key. For
devices having a shift key, specifying only the upper case of a particular letter enables both upper
and lower case of that key, but the device converts lower case letters to upper case in the output
parameter. To enable both upper and lower case keys, and have both upper and lower case letters
returned, specify both the upper and lower case of the letter (e.g. "12AaBb"). For devices not
having a shift key, specifying either the upper case only (e.g. "12AB"), or specifying both the
upper and lower case of a particular letter (e.g. "12AaBb"), enables that key and causes the device
to return the upper case of the letter in the output parameter. For both types of device, specifying
only lower case letters (e.g. "12ab") produces a key invalid error. This parameter is a NULL
pointer if no keys of this type are active keys. IpszActiveKeys and [pwszActiveUNICODEKeys are
mutually exclusive, so IpszActiveKeys must be a NULL pointer if [pwszActiveUNICODEKeys is
not a NULL pointer.

IpwszActiveUNICODEKeys

String which specifies the alphanumeric keys on the Text Terminal Unit, e.g. “12ABab”
(UNICODE), to be active during the execution of the next WFS CMD_TTU READ FORM
command. Devices having a shift key interpret this parameter differently from those that do not
have a shift key. For devices having a shift key, specifying only the upper case of a particular
letter enables both upper and lower case of that key, but the device converts lower case letters to
upper case in the output parameter. To enable both upper and lower case keys, and have both
upper and lower case letters returned, specify both the upper and lower case of the letter (e.g.
"12AaBb"). For devices not having a shift key, specifying either the upper case only (e.g.
"12AB"), or specifying both the upper and lower case of a particular letter (e.g. "12AaBb"),
enables that key and causes the device to return the upper case of the letter in the output
parameter. For both types of device, specifying only lower case letters (e.g. "12ab") produces a
key invalid error. IpszActiveKeys and [pwszActiveUNICODEKeys are mutually exclusive, so
IpswzUNICODEActiveKeys must be a NULL pointer if [pszActiveKeys is not a NULL pointer.

IpwActiveCommandKeys

Array specifying the command keys which are active during the execution of the next

WFS CMD TTU READ FORM command. The array is terminated with a zero value and this
array is a NULL pointer if no keys of this type are active keys.

IpwTerminateCommandKeys

Array specifying the command keys which must terminate the execution of the next

WFS CMD TTU READ FORM command. The array is terminated with a zero value and this
array is a NULL pointer if no keys of this type are terminate keys.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR TTU KEYINVALID At least one of the specified keys is invalid.

Page 35
CWA 15748-9:2008

WFS _ERR TTU KEYNOTSUPPORTED At least one of the specified keys is not
supported by the Service Provider.
WFS ERR TTU NOACTIVEKEYS There are no active keys specified.

Events Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 36

CWA 15748-9:2008

512 WFS_CMD_TTU POWER_SAVE_CONTROL

Description

Input Param

Output Param

Error Codes

Events

Comments

This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

LPWFSTTUPOWERSAVECONTROL IpPowerSaveControl;

typedef struct _wfs ttu power_ save_ control

USHORT usMaxPowerSaveRecoveryTime;
} WEFSTTUPOWERSAVECONTROL, *LPWFSTTUPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its normal
operating state when exiting power save mode. The device will be set to the highest possible
power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero then the
device will exit the power saving mode.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS _ERR TTU POWERSAVETOOSHORT The power saving mode has not been
activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR TTU POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS SRVE TTU POWER SAVE CHANGE The power save recovery time has changed.

None.

6. Events

Page 37
CWA 15748-9:2008

6.1WFS_EXEE_TTU_FIELDERROR

Description

Event Param

Comments

This event specifies that a fatal error has occurred while processing a field.

LPWFSTTUFIELDFAIL IpFieldFail;

typedef struct wfs ttu field failure

WFS_TTU_FIELDSTATICOVWR
WFS_TTU_FIELDOVERFLOW
WFS_TTU_FIELDNOTFOUND
WFS_TTU_FIELDNOTREAD
WFS_TTU_FIELDNOTWRITE
WFS_TTU_FIELDTYPENOTSUPPORTED

WFS_TTU_CHARSETFORM

None.

LPSTR lpszFormName;
LPSTR lpszFieldName;
WORD wFailure;
} WFSTTUFIELDFAIL, *LPWFSTTUFIELDFAIL;
IpszFormName
Points to the null-terminated form name.
IpszFieldName
Points to the null-terminated field name.
wFailure
Specifies the type of failure and can be one of the following:
Value Meaning
WFS TTU_ FIELDREQUIRED The specified field must be supplied by the
application.

The specified field is static and thus cannot
be overwritten by the application.

The value supplied for the specified fields is
too long.

The specified field does not exist.

The specified field is not an input field.

An attempt was made to write to an input
field.

The form field type is not supported with
device.

Service Provider does not support character
set specified in form.

Page 38
CWA 15748-9:2008

6.2WFS_EXEE_TTU_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.
Event Param LPWFSTTUFIELDFAIL IpFieldFail;
As defined in the section describing WFS _EXEE TTU FIELDERROR.

Comments None.

Page 39
CWA 15748-9:2008

6.3WFS_EXEE_TTU_KEY

Description

Event Param

Comments

This event specifies that any active key has been pressed at the TTU during the

WFS CMD TTU READ command. In addition to giving the application more details about
individual key presses this information may also be used if the device has no internal display unit
and the application has to manage the display of the entered digits.

LPWFSTTUKEY IpKey;

typedef struct _wfs_ ttu key

CHAR cKey;
WORD wUNICODEKey;
WORD wCommandKey ;

} WEFSTTUKEY, *LPWFSTTUKEY;

cKey

On a numeric or alphanumeric key press this parameter holds the value of the key pressed. This
value is WFS_TTU NOKEY if no numeric or alphanumeric key was pressed or if capability
fwCharSupport equals WFS_TTU UNICODE.

wUNICODEKey

On a numeric or alphanumeric key press this parameter holds the value of the key pressed in
UNICODE format. This value is WFS_TTU NOKEY if no numeric or alphanumeric key was
pressed or if capability fwCharSupport equals WFS_TTU_ASCII.

wCommandKey
On a Command key press this parameter holds the value of the Command key pressed, e.g.
WFS TTU_CK _ENTER. This value is WFS_TTU NOKEY when no command key was pressed.

Note: Only one of the parameters cKey, wWUNICODEKey, wCommandKey can have the value of a
valid key, the others must be set to WFS_ TTU NOKEY.

None.

Page 40

CWA 15748-9:2008

6.4WFS_SRVE_TTU_DEVICEPOSITION

Description

Event Param

Comments

This service event reports that the device has changed its position status.
LPWFSTTUDEVICEPOSITION IpDevicePosition;

typedef struct _wfs ttu device position

WORD wPosition;
} WFSTTUDEVICEPOSITION, *LPWFSTTUDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning

WFS_TTU_DEVICEINPOSITION The device is in its normal operating
position.

WFS _TTU DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS _TTU DEVICEPOSUNKNOWN The position of the device cannot be
determined.

None.

Page 41
CWA 15748-9:2008

6.5WFS_SRVE_TTU_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.
Event Param LPWFSTTUPOWERSAVECHANGE lpPowerSaveChange;

typedef struct _wfs_ ttu power_ save_ change

USHORT usPowerSaveRecoveryTime;
} WFSTTUPOWERSAVECHANGE, *LPWFSTTUPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments None.

Page 42
CWA 15748-9:2008

7. Form and Field Definitions

This section outlines the format of the definitions of forms, the fields within them, and the media on which they are
printed.

7.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:

White space space, tab.

Line continuation backslash (V).

Line termination CR, LF, CR/LF; line termination ends a
“keyword section” (a keyword and its
value[s]).

Keywords must be all upper case.

Names (field/media/font names) any case; case is
preserved; Service Providers are case
sensitive.

Strings all strings must be enclosed in double quote

characters ("); standard C escape sequences
are allowed.

Comments start with two forward slashes (//); end at line
termination.

Other notes:

e Ifakeyword is present, all its values must be specified; default values are used only if the keyword is
absent.

e Values that are character strings are marked with asterisks in the definitions below, and must be quoted as
specified above.

e Fields are processed in the sequence they are defined in the form.
e The order of attributes within a form is not mandatory; the attributes may be defined in any order.

e All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the
UNICODE representation is used then all Names and Strings are restricted to an internal representation of
ISO 646 (ANSI) characters. Only the INITIALVALUE keyword values can have double byte values
outside of the ISO 646 (ANSI) character set.

e [f forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix
must be in Little Endian (XFFFE) or Big Endian (XFEFF) notation, such that UNICODE encoding is
recognized.

Page 43
CWA 15748-9:2008

7.2XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore
the following considerations should be taken into account when applications use XFS form definition files with the
purpose of running in a multi-vendor environment:

e Physical display area dimensions may vary from one text terminal to another.

e Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to
create dynamic form files just before displaying them (which in return means that only the display data of
the forms can be changed, not the -layout data such as field positions).

e Some form/media definition keywords may not be supported due to limitations of the hardware or software.

Page 44

CWA 15748-9:2008

7.3Form Definition '

XFSFORM Jformname*
BEGIN
(required) SIZE width, Width of form
height Height of form
VERSION major, Major version number (default 0)
minor, Minor version number (default 0)
date?, Creation/modification date
author* Author of form
(required) LANGUAGE languagelD Language used in this form - a 16 bit value (LANGID) which is
a combination of a primary (10 bits) and a secondary (6 bits)
language ID (This is the standard language ID in the Win32
APT; standard macros support construction and decomposition
of this composite ID)
COPYRIGHT copyright* Copyright entry
TITLE title* Title of form
COMMENT comment* Comment section
[XFSFIELD fieldname* One field definition (as defined in the next section) for each
field in the form
BEGIN
END |
END

! Attributes are not required in any mandatory order within a Form Definition.

7.4Field Definition 2

Page 45
CWA 15748-9:2008

XFSFIELD

fieldname*

BEGIN

LANGUAGE

languagelD

Language used for this field.

See Form definition for detailed description.

If unspecified defaults to form definition LANGUAGE
specification.

(required)

POSITION

X,

¥

Horizontal position (relative to left side of form)
Vertical position (relative to top of form)
The initial left upper position is referenced as (0,0)

(required)

SIZE

width,
height

Field width
Field height

TYPE

fieldtype

Type of field:

TEXT (default)

INVISIBLE

PASSWORD (contents is echoed with “*”)
GRAPHIC (ignored for WFS CMD TTU READ FORM
commands)

SCALING

scalingtype

Information on how to size the GRAPHIC within the field:
BESTFIT (default) scale to size indicated

ASIS render at native size

MAINTAINASPECT scale as close as possible to size
indicated while maintaining the aspect ratio and not losing
graphic information.

SCALING is only relevant for GRAPHICS field types

CLASS

class

Field class:
OPTIONAL (default)
STATIC
REQUIRED

KEYS

keys

Accepted input key types:

NUMERIC

HEXADECIMAL

ALPHANUMERIC
This is an optional field where the default value is vendor
dependent.

ACCESS

access

Access rights of field:
WRITE (default)
READ
READWRITE

OVERFLOW

overflow

Action on field overflow:
TERMINATE (default)
TRUNCATE
OVERWRITE

STYLE

style

Display attributes as a combination of the following, ORed
together using the "|" operator:

NORMAL (default)

UNDER (single underline)

INVERTED

FLASHING

HORIZONTAL

Jjustify

Horizontal alignment of field contents:
LEFT (default)
RIGHT
CENTER

* Attributes are not required in any mandatory order within a Field Definition.

Page 46
CWA 15748-9:2008

FORMAT formatstring | This is an application defined input field describing how
* the application should format the data. This may be
interpreted by the Service Provider.
INITIALVALUE value* Initial value. For GRAPHIC type fields, this value will

contain the filename of the graphic image. The type of this
graphic will be determined by the file extension (e.g. BMP
for Windows Bitmap). The graphic file name must contain
the full path.

For example “C:\XFS\BSVCLOGO.BMP” illustrates the
use of the full path name

END

8. C - Header file

Page 47

CWA 15748-9:2008

/**

*

* xfsttu.h XFS - Text Terminal Unit
*

* Version 3.10 (29/11/2007)
*

*

#ifndef _ INC XFSTTU H

#define _ INC XFSTTU H

#ifdef _ cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */

#pragma pac

/* values o

k(push, 1)

f WFSTTUCAPS.wClass */

#define WFS_SERVICE CLASS TTU

#define WFS_SERVICE CLASS NAME TTU
#define WFS_SERVICE CLASS VERSION TTU
#define TTU_SERVICE OFFSET

/* TTU Info

Commands */

#define WFS_INF_TTU STATUS
#define WFS_INF TTU CAPABILITIES
#define WFS_INF TTU FORM LIST
#define WFS_INF_TTU QUERY FORM
#define WFS_INF_TTU QUERY FIELD
#define WFS_INF_TTU KEY DETAIL

/* TTU Command Verbs */

#define WFS_CMD TTU BEEP

#define WFS_CMD_TTU CLEARSCREEN
#define WFS_CMD TTU DISPLIGHT
#define WFS_CMD TTU SET LED
#define WFS_CMD TTU SET RESOLUTION
#define WFS_CMD_TTU WRITE FORM
#define WFS_CMD TTU READ FORM
#define WFS_CMD_TTU WRITE

#define WFS_CMD_TTU READ

#define WFS_CMD_TTU RESET

#define WFS_CMD_TTU DEFINE_KEYS
#define WFS_CMD TTU POWER SAVE_ CONTROL

/* TTU Mess

ages */

#define WFS_EXEE_TTU FIELDERROR
#define WFS_EXEE_TTU FIELDWARNING
#define WFS_EXEE_TTU KEY

#define WFS_SRVE_TTU DEVICEPOSITION
#define WFS_SRVE_TTU POWER_SAVE CHANGE

/* Values o

f WFSTTUSTATUS.fwDevice */

#define WFS_TTU DEVONLINE
#define WFS_TTU DEVOFFLINE
#define WFS_TTU DEVPOWEROFF
#define WFS_TTU_ DEVBUSY
#define WFS_TTU DEVNODEVICE
#define WFS_TTU DEVHWERROR
#define WFS_TTU DEVUSERERROR

#define

WFS_ TTU DEVFRAUDATTEMPT

definitions

khkkkhhkkhhkhkdkhkhhhhhkhhhhdhhdhhkhhhhhkhdhhhhhhdhdhdhhhhhdhhhdhkhdhdrdhhdrhhkrdhkrdhkrdrhkdrhhxk

(7)
n TTU n
(0x0A03) /* Version 3.10 */

(WFS_SERVICE CLASS TTU * 100)

TTU_SERVICE OFFSET
TTU_SERVICE OFFSET
TTU_SERVICE OFFSET
TTU_SERVICE OFFSET
TTU_SERVICE OFFSET

(
(
(
(
(
(TTU_SERVICE OFFSET

+ o+ o+ o+ o+ o+
AU WN R

(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET

WooJ0 U+ whE

S I I

(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET

+ o+ o+ o+ o+
[C I Ry

WFS_STAT DEVONLINE
WFS_STAT DEVOFFLINE
WFS_STAT DEVPOWEROFF
WFS_STAT DEVBUSY
WFS_STAT DEVNODEVICE
WFS_STAT DEVHWERROR
WFS_STAT DEVUSERERROR
WFS_STAT DEVFRAUDATTEMPT

*
*
*
*
*
/

Page 48
CWA 15748-9:2008

/* Values of WFSTTUSTATUS.wKeyboard */

#define WFS_TTU_KBDNA (0)
#define WFS_TTU_KBDON (1)
#define WFS_TTU KBDOFF (2)

/* Values of WFSTTUSTATUS.wKeyLock */

#define WFS_TTU_ KBDLOCKNA (0)
#define WFS_TTU_ KBDLOCKON (1)
#define WFS_TTU_ KBDLOCKOFF (2)
#define WFS_TTU LEDS_MAX (8)

/* Values of WFSTTUSTATUS.fwLEDs */

#define WFS_TTU_LEDNA (0x0000)

#define WFS_TTU_LEDOFF (0x0001)

#define WFS TTU LEDSLOWFLASH (0x0002)

#define WFS TTU LEDMEDIUMFLASH (0x0004)

#define WFS TTU LEDQUICKFLASH (0x0008)

#define WFS_TTU LEDCONTINUOUS (0x0080)

/* Values of WFSTTUSTATUS.wDevicePosition

WFSTTUDEVICEPOSITION.wPosition */

#define WFS TTU DEVICEINPOSITION (0)

#define WFS TTU DEVICENOTINPOSITION (1)

#define WFS TTU DEVICEPOSUNKNOWN (2)

#define WFS TTU DEVICEPOSNOTSUPP (3)

/* Values of WFSTTUCAPS.fwType */

#define WFS_TTU FIXED (0x0001)

#define WFS TTU REMOVABLE (0x0002)

/* Values of WFSTTUCAPS.fwCharSupport
WFSTTUWRITE . fwCharSupport */

#define WFS_TTU ASCII (0x0001)

#define WFS_TTU_ UNICODE (0x0002)

/* Values of WFSTTUFRMFIELD.fwType */

#define WFS TTU FIELDTEXT (0)

#define WFS TTU FIELDINVISIBLE (1)

#define WFS TTU FIELDPASSWORD (2)

/* Values of WFSTTUFRMFIELD.fwClass */

#define WFS TTU CLASSOPTIONAL (0)

#define WFS_TTU CLASSSTATIC (1)

#define WFS_TTU CLASSREQUIRED (2)

/* Values of WFSTTUFRMFIELD.fwAccess */

#define WFS_TTU ACCESSREAD (0x0001)

#define WFS_TTU ACCESSWRITE (0x0002)

/* Values of WFSTTUFRMFIELD.fwOverflow */

#define WEFS TTU OVFTERMINATE (0)

#define WFS_TTU OVFTRUNCATE (1)

#define WEFS TTU OVFOVERWRITE (2)

/* Values of WFSTTUWRITE.fwMode */

#define WFS_TTU POSRELATIVE (0)

#define WFS_TTU POSABSOLUTE (1)

/* Values of WFSTTUWRITE.fwTextAttr */

#define WFS TTU TEXTUNDERLINE (0x0001)

#define
#define

WFS_ TTU TEXTINVERTED
WFS_TTU TEXTFLASH

/* Values of WFSTTUFRMREAD.fwEchoMode */

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

WFS_TTU ECHOTEXT
WFS TTU ECHOINVISIBLE
WEFS_TTU ECHOPASSWORD

WFS_TTU BEEPOFF

WFS_TTU BEEPKEYPRESS
WFS_TTU BEEPEXCLAMATION
WFS_TTU_ BEEPWARNING
WFS_TTU BEEPERROR
WFS_TTU BEEPCRITICAL
WFS_TTU_ BEEPCONTINUOUS

/* values of WFSTTUFIELDFAIL.wFailure */

#define
#define
#define
#define
#define
#define
#define
#define

/* values of WFSTTUKEYDETAIL.lpwCommandKeys */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WFS_TTU FIELDREQUIRED

WFS TTU FIELDSTATICOVWR

WFS TTU FIELDOVERFLOW
WFS_TTU FIELDNOTFOUND

WFS_TTU FIELDNOTREAD

WFS TTU FIELDNOTWRITE

WFS TTU FIELDTYPENOTSUPPORTED
WFS_TTU CHARSETFORM

WFS_TTU_ NOKEY
WFS_TTU CK_ENTER
WFS_TTU CK_CANCEL
WFS_TTU_ CK_CLEAR
WFS_TTU_ CK BACKSPACE
WFS_TTU CK_HELP
WFS_TTU CK 00
WFS_TTU CK 000
WFS_TTU_CK_ARROWUP
WFS_TTU_CK_ARROWDOWN
WFS_TTU_CK_ARROWLEFT
WFS_TTU CK_ARROWRIGHT
WFS_TTU_CK_OEM1
WFS_TTU_CK_OEM2
WFS_TTU_CK_OEM3
WFS_TTU_ CK_OEM4
WFS_TTU_CK_OEM5
WFS_TTU_CK_OEM6
WFS_TTU_CK_OEM?7
WFS_TTU_CK_OEMS
WFS_TTU_CK_OEM9
WFS_TTU_CK_OEM10
WFS_TTU CK OEM11
WFS_TTU_CK_OEM12
WFS_TTU CK FDKO1
WFS_TTU_CK_FDKO?2
WFS_TTU_CK_FDKO03
WFS_TTU_CK_FDK04
WFS_TTU_CK_FDKO05
WFS_TTU_CK_FDKO06
WFS_TTU_CK_FDKO07
WFS_TTU_CK_FDKO08
WFS_TTU_CK _FDKO09
WFS_TTU_CK_FDK10
WFS_TTU CK FDK11
WFS_TTU_CK_FDK12
WFS_TTU CK_FDK13
WFS_TTU_CK FDK14
WFS_TTU_CK_FDK15
WFS_TTU_CK_FDK16
WFS_TTU_CK_FDK17
WFS_TTU_CK_FDK18
WFS_TTU_CK _FDK19
WFS_TTU_CK_FDK20

(0x0002)
(0x0004)

(0x0001)
(0x0002)
(0x0004)
(0x0008)
(0x0010)
(0x0020)
(0x0080)

ok WNhR O

FROVUOJdOULd WNDRO
N O ————— — — — — —

=

Page 49
CWA 15748-9:2008

Page 50
CWA 15748-9:2008

#define WFS_TTU_CK_FDK21 (4
#define WFS_TTU_CK_FDK22 (4
#define WFS_TTU_CK_FDK23 (4
#define WFS_TTU_CK_FDK24 (4
#define WFS_TTU_CK_FDK25 (4
#define WFS_TTU_CK_FDK26 (4
#define WFS_TTU_CK_FDK27 (5
#define WFS_TTU_CK_FDK28 (5
#define WFS_TTU_CK_FDK29 (5
#define WFS_TTU_CK_FDK30 (5
#define WFS_TTU_CK_FDK31 (5
#define WFS_TTU_CK_FDK32 (5

/* XFS TTU Errors */

#define WFS_ERR_TTU FIELDERROR (-
#define WFS_ERR_TTU FIELDINVALID (-
#define WFS_ERR TTU FIELDNOTFOUND (-
#define WFS_ERR TTU FIELDSPECFAILURE (-
#define WFS_ERR_TTU FORMINVALID (-
#define WFS_ERR_TTU FORMNOTFOUND (-
#define WFS_ERR_TTU INVALIDLED (-
#define WFS_ERR_TTU KEYCANCELED (-
#define WFS_ERR_TTU MEDIAOVERFLOW (-
#define WFS_ERR_TTU RESNOTSUPP (-
#define WFS_ERR_TTU CHARSETDATA (-
#define WFS_ERR_TTU KEYINVALID (-
#define WFS_ERR_TTU KEYNOTSUPPORTED (-
#define WFS_ERR_TTU NOACTIVEKEYS (-
#define WFS_ERR TTU POWERSAVETOOSHORT (-
[¥=========———====—————————-===————————-===—===—===

typedef struct wfs ttu status

WORD fwDevice;

WORD wKeyboard;

WORD wKeylock;

WORD wLEDs [WFS_TTU LEDS MAX] ;
WORD wDisplaySizeX;

WORD wDisplaySizeY;

LPSTR lpszExtra;

WORD wDevicePosition;

USHORT usPowerSaveRecoveryTime;

} WFSTTUSTATUS, *LPWFSTTUSTATUS;

typedef struct wfs ttu resolution

WORD wSizeX;
WORD wSizeY;
} WEFSTTURESOLUTION, *LPWFSTTURESOLUTION;

typedef struct wfs ttu caps

WORD wClass;

WORD fwType;

LPWFSTTURESOLUTION *1ppResolutions;

WORD wNumOfLEDs ;

BOOL bKeyLock;

BOOL bDisplayLight;

BOOL bCursor;

BOOL bForms;

WORD fwCharSupport;

LPSTR lpszExtra;

BOOL bPowerSaveControl;
} WESTTUCAPS, *LPWFSTTUCAPS;

typedef struct wfs ttu frm header

U WNhRE O WOWJOo Ul »

LPSTR lpszFormName ;
WORD wWidth;
WORD wHeight;

(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET
(TTU_SERVICE OFFSET

R A I I T

FRPEFEWOWWOJIONU P WNE

WNR O————— — — — —

[y

WORD wVersionMajor;
WORD wVersionMinor;
WORD fwCharSupport;
LPSTR lpszFields;
WORD wLanguagelD;

} WFSTTUFRMHEADER, *LPWFSTTUFRMHEADER;

typedef struct _wfs_ ttu query field
LPSTR lpszFormName ;
LPSTR lpszFieldName;

} WFSTTUQUERYFIELD, *LPWFSTTUQUERYFIELD;

typedef struct wfs ttu frm field

LPSTR lpszFieldName;
WORD fwType;

WORD fwClass;

WORD fwAccess;

WORD fwOverflow;
LPSTR lpszFormat;
WORD wLanguagelD;

} WFSTTUFRMFIELD, *LPWFSTTUFRMFIELD;

typedef struct wfs ttu key detail

LPSTR lpszKeys;
LPWSTR 1lpwszUNICODEKeys ;
LPWORD lpwCommandKeys;

} WEFSTTUKEYDETAIL, *LPWFSTTUKEYDETAIL;

typedef struct wfs ttu clear screen

WORD wPositionX;
WORD wPositionY;
WORD wWidth;
WORD wHeight;

} WFSTTUCLEARSCREEN, *LPWFSTTUCLEARSCREEN;
typedef struct wfs ttu disp light

BOOL bMode;
} WEFSTTUDISPLIGHT, * LPWFSTTUDISPLIGHT;

typedef struct wfs ttu set leds
WORD wLED;
WORD fwCommand;
} WFSTTUSETLEDS, *LPWFSTTUSETLEDS;

typedef struct wfs ttu write form

LPSTR lpszFormName ;

BOOL bClearScreen;
LPSTR lpszFields;

LPWSTR 1pszUNICODEFields;

} WEFSTTUWRITEFORM, *LPWFSTTUWRITEFORM;
typedef struct wfs ttu read form
LPSTR lpszFormName ;
LPSTR lpszFieldNames;
} WEFSTTUREADFORM, *LPWFSTTUREADFORM;
typedef struct wfs ttu read form out
LPSTR lpszFields;
LPWSTR 1lpszUNICODEFields;
} WEFSTTUREADFORMOUT, *LPWFSTTUREADFORMOUT;
typedef struct wfs ttu def keys

LPSTR lpszActiveKeys;
LPWSTR lpwszActiveUNICODEKeys;

Page 51
CWA 15748-9:2008

Page 52
CWA 15748-9:2008

LPWORD lpwActiveCommandKeys;
LPWORD lpwTerminateCommandKeys;
} WFSTTUDEFKEYS, *LPWFSTTUDEFKEYS;

typedef struct _wfs_ttu write

WORD fwMode ;

SHORT wPosX;

SHORT wPosY;

WORD fwTextAttr;
LPSTR lpsText;
LPWSTR 1psUNICODEText ;

} WEFSTTUWRITE, *LPWFSTTUWRITE;

typedef struct wfs ttu read

WORD wNumOfChars;

WORD fwMode;

SHORT wPosX;

SHORT wPosY;

WORD fwEchoMode;

WORD fwEchoAttr;

BOOL bCursor;

BOOL bFlush;

BOOL bAutoEnd;

LPSTR lpszActiveKeys;

LPWSTR lpwszActiveUNICODEKeysS;
LPWORD lpwActiveCommandKeys;
LPWORD lpwTerminateCommandKeys;

} WFSTTUREAD, *LPWFSTTUREAD;
typedef struct wfs ttu read in
LPSTR lpszInput;
LPWSTR 1lpszUNICODEInput;
} WFSTTUREADIN, *LPWFSTTUREADIN;

typedef struct wfs ttu power save control

USHORT usMaxPowerSaveRecoveryTime;
} WESTTUPOWERSAVECONTROL, *LPWFSTTUPOWERSAVECONTROL;

[*========—=——====—————————-=-=-=-————————--=-=-==————————-=-======—=—=—====

typedef struct wfs ttu field failure

LPSTR lpszFormName ;
LPSTR lpszFieldName;
WORD wFailure;

} WFSTTUFIELDFAIL, *LPWFSTTUFIELDFAIL;

typedef struct wfs ttu key

CHAR cKey;
WORD wUNICODEKey;
WORD wCommandKey ;

} WFSTTUKEY, *LPWFSTTUKEY;
typedef struct wfs ttu device position

WORD wPosition;
} WEFSTTUDEVICEPOSITION, *LPWFSTTUDEVICEPOSITION;

typedef struct wfs ttu power save change

USHORT usPowerSaveRecoveryTime;
} WESTTUPOWERSAVECHANGE, *LPWEFSTTUPOWERSAVECHANGE ;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus

Page 53
CWA 15748-9:2008

} /*extern "C"*/
#endif

#endif /* __INC_XFSTTU H */

